## Newington College HSC Mini Examination April 2012

Answer Questions 1 to 10 (multiple choice) on the sheet attached to the end of the paper which is to be removed.

#### **Question 1**

The correct equation for a circle with centre (-1, 2) and radius of 5 is:

A.  $(x-1)^2 + (y+2)^2 = 25$  B.  $(x-1)^2 + (y+2)^2 = 5$  $(1)^{2} + (1)^{2} - 25$ 

C. 
$$(x+1)^2 + (y-2)^2 = 25$$
 D.  $(x+1)^2 + (y-2)^2 = 5$ 

#### **Question 2**

The integral of 
$$\int \frac{1}{x^2} + \frac{1}{x} dx$$
 is  
A.  $-\frac{3}{x^3} - \frac{2}{x^2} + c$ 
B.  $-\frac{1}{x} + \log_e x + c$ 
C.  $-\frac{1}{x} - \frac{2}{x^2} + c$ 
D.  $-\frac{1}{3x^3} + \log_e x + c$ 

#### **Question 3**

If  $\log_a 2 = x$  and  $\log_a 3 = y$ , then  $\log_a 12$  can be written as

- B.  $x^2 y$ A. 2x + y
- D. x+2yC. 2xy

#### **Question 4**

For the parabola,  $(y-k)^2 = 4a(x-h)$ , the axis of symmetry is given by:

- B. x = kA. x = h
- C. y = hD. y = k

If 
$$f'(x) = -\frac{1}{x^2}$$
 and  $f''(x) = \frac{2}{x^3}$ , then for  $x > 0$ ,  $f(x)$  is

- A. Increasing and concave down
- C. Increasing and concave up
- B. Decreasing and concave down
- D. Decreasing and concave up

## Question 6

Which graph best represents the equation,  $y = e^x - e^{-x}$ ?





Q7...cont./Page 3

If 
$$\sin \theta = \cos\left(\frac{3\pi}{4}\right)$$
, then  $\theta$  could be equal to

A. 
$$\frac{\pi}{4}$$
 and  $\frac{3\pi}{4}$  B.  $\frac{3\pi}{4}$  and  $\frac{5\pi}{4}$ 

C. 
$$\frac{5\pi}{4}$$
 and  $\frac{7\pi}{4}$  D.  $\frac{\pi}{4}$  and  $\frac{7\pi}{4}$ 

## **Question 8**

 $2^{-\log_2 5}$  is equal to

A. 
$$\frac{1}{5}$$
 B.  $-\frac{1}{5}$  C. 5 D.  $-5$ 

## Question 9



Using the graph above, or otherwise, if  $\int_{0}^{\pi} \sin x \, dx = 1$  then the area shaded above is equal to:

A. 2 B. 0 C.  $\pi$  D.  $2\pi$ 

Q10...cont/page 4

Choose the locus from the diagrams below that is best described by the information given; "A point P moves such that it is equidistant from two fixed points A and B."



Q11...cont/page 5

#### Question 11 Start this question in a new booklet (15 Marks) Marks

(a) If  $\alpha$  and  $\beta$  are the roots of the quadratic equation,  $y = x^2 - 5x + 6$ , find:

- (i)  $\alpha + \beta$
- (ii)  $\alpha\beta$
- (iii)  $\alpha^2 + \beta^2$

(iv) 
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
 (6)

(b) Show that 
$$y = -(x^2 - 3x + 6)$$
 is negative definite for all values of x. (2)

(c) For the curve, 
$$y = x^2 - 4x$$
, rewrite in the form,  $(x-h)^2 = 4a(y-k)$ , and hence, or otherwise, find:

- (i) the vertex
- (ii) the focal length
- (iii) the focus
- (iv) the equation of the directrix (7)

#### Question 12 Start this question in a new booklet (15 marks)

(a) Find the following limits:

(i) 
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

(ii) 
$$\lim_{x \to \infty} \frac{1-x}{x}$$
 (3)

Q12...cont./page 6

#### Question 12 (cont.)

- (b) Differentiate the following:
  - (i)  $(x^3-5)^7$
  - (ii)  $x^3(2-x)^4$
  - (iii)  $\frac{x}{x^2 4}$  (8)
- (c) (i) Find the roots of the curve,  $y = x^2 3x + 2$ .
  - (ii) Find the equation of the tangent for the root with the greatest (4) value of x.

#### Question 13 Start this question in a new booklet (15 marks)

- (a) For the curve,  $y = x^3 + x^2 x + 5$ ,
  - (i) find any stationary points and their nature.
  - (ii) find any points of inflexion.
  - (iii) Sketch the curve showing all the above and the *y* intercept. (8)
- (b) A square-based prism has a total surface area of  $96 \text{ cm}^2$ .
  - (i) Using *x* cm as the base length and *y* cm as the height draw a diagram of the prism.

(ii) Show that 
$$y = \frac{(48 - x^2)}{2x}$$

- (iii) Hence, write an equation for the volume of the prism, in terms of x only.
- (iv) Hence, or otherwise, find the maximum volume of the prism and the values of x and y when this occurs. (7)

Q14...cont./page 7

Marks

(a) Find the integral of

(i) 
$$\int 3x^2 + \frac{2}{x^2} dx$$
  
(ii)  $\int_{0}^{1} (4-x)^5 dx$  (4)

(b) Find the area bounded by the curve  $y = 4x - x^2$  and the x axis. (3)



(c) Below are the curve  $y = (x-2)^2$  and the straight line y = 4 - x,

(2)

#### Question 15 Start this question in a new booklet (15 marks) Marks

(a) Simplify 
$$\log_3 27 - \log_9 \left(\frac{1}{3}\right) + 7$$
 (2)

(b) (i) Find the first and second derivatives of  $f(x) = \frac{x}{e^x}$ .

- (ii) Find any stationary points for the curve determine their nature.
- (iii) Find any points of inflexion.
- (iv) Explain why  $f(x) \rightarrow 0$  as  $x \rightarrow \infty$ .
- (v) Sketch  $f(x) = \frac{x}{e^x}$ , using the information above. (8)
- (c) The graph shows the curve  $y = \frac{4}{\sqrt{x}}$ , with the area under the curve from  $1 \le x \le 5$

shaded.



If this area is now revolved around the x axis find the exact value of the volume generated. (5)

Q16...cont./page 9

#### Question 16Start this question in a new booklet(15 marks)Marks

(a) In the diagram, the area of the sector is  $\frac{3\pi}{2}$  cm<sup>2</sup>. Find the radius of the sector.



(2)

(b) In the unit circle shown, find the exact value of the co-ordinates of the point P.



(c) Solve the following equation, for  $0 \le x \le 2\pi$ , (3)

$$2\sin^2 x - 1 = 0$$

(d) (i) Sketch the graph, 
$$y = 2\sin\frac{x}{2}$$
, from  $0 \le x \le 2\pi$ 

Use Simpson's Rule and 5 function values to find the approximate area
 bounded by the curve and the *x*-axis.
 (7)

#### **END OF EXAMINATION**

# Question 1 С Question 2 B. Question 3 A Question 4 D Question 5 D Question 6 D Question 7 С Question 8 Α Question 9 Α

# Question 10

В

Newington College

(c)

Marks

Question 11 Start this question in a new booklet (15 Marks)

(a) (i) 
$$\alpha + \beta = -\frac{-5}{1} = 5$$
 [1]

(ii) 
$$\alpha\beta = \frac{6}{1} = 6$$
 [1]

(iii) 
$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$
$$= 5^{2} - 2 \times 6$$
$$= 13$$
[2]

(iv) 
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2}$$
$$= \frac{13}{36}$$
[2]

(b)  $y = -(x^2 - 3x + 6)$  is **negative definite** if for the general equation:

$$a < 0$$
 and  $\Delta < 0$ 

In this equation a = -1 < 0 so true, and,  $\Delta = 3^2 - 4(-1)(-6) = 9 - 24 = -13 < 0$  which is also true so this equation is negative definite. [2]

$$y = x^{2} - 4x$$

$$y + 4 = x^{2} - 4x + 4$$

$$y + 4 = (x - 2)^{2}$$

$$(x - 2)^{2} = 4\left(\frac{1}{4}\right)(y - (-4))$$
[3]

- (i) the vertex at (2,-4) [1]
- (ii) the focal length =  $\frac{1}{4}$  [1]

(iii) the focus at 
$$\left(2, -3\frac{3}{4}\right)$$
 [1]

(iv) the equation of the directrix is given by 
$$y = -4\frac{1}{4}$$
 [1]

## Question 12 Start this question in a new booklet (15 marks)

(a) (i) 
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$$
$$= \lim_{x \to 3} x + 3$$
[1]
$$= 6$$

(ii) 
$$\lim_{x \to \infty} \frac{1-x}{x} = \lim_{x \to \infty} \frac{1}{x} - 1$$
$$= 0 - 1$$
$$= -1$$
[2]

(b) (i) 
$$\frac{d(x^3-5)^7}{dx} = 3x^2(7)(x^3-5)^6$$
 [2]  
=  $21x^2(x^3-5)^7$ 

(ii) 
$$\frac{d\left[x^{3}(2-x)^{4}\right]}{dx} = 3x^{2}(2-x)^{4} + x^{3}(-4)(2-x)^{3}$$
$$= x^{2}(2-x)^{3}[3(2-x)-4x]$$
$$= x^{2}(2-x)^{3}(6-7x)$$

(iii) 
$$\frac{d\left(\frac{x}{x^2-4}\right)}{dx} = \frac{\left(x^2-4\right)-2x(x)}{\left(x^2-4\right)^2} = -\frac{x^2+4}{\left(x^2-4\right)^2}$$
[3]

(c) (i). 
$$y = x^2 - 3x + 2$$
 [2]  
 $x^2 - 3x + 2 = 0$   
 $(x-2)(x-1) = 0$   
 $x = 1 \text{ or } 2$ 

(ii) If 
$$x = 2$$
, then  
 $\frac{dy}{dx} = 2x - 3$ 
[2]  
If  $x = 2$  then  
 $\frac{dy}{dx} = 2(2) - 3 = 1$   
At  $x = 2$ ,  $y = 2^2 - 3(2) + 2 = 0$ 

(i)

$$y - 0 = 1(x - 2)$$
$$y = x - 2$$

Question 13 Start this question in a new booklet (15 marks)

(a)

$$y = x^{3} + x^{2} - x + 5$$
  

$$\frac{dy}{dx} = 3x^{2} + 2x - 1$$
  

$$= (3x - 1)(x + 1)$$
  
If  $\frac{dy}{dx} = 0$ , then  $x = \frac{1}{3}$  or  $-1$ 

Hence, stationary points at  $\left(\frac{1}{3}, 4\frac{22}{27}\right)$  and  $\left(-1, 6\right)$ 

Since,  $y = \left(\frac{1}{3}\right)^3 + \left(\frac{1}{3}\right)^2 - \frac{1}{3} + 5 = 4\frac{22}{27}$ , and

$$y = (-1)^{3} + (=1)^{2} - (-1) + 5 = 6$$

| x               | -2  | -1  | 0   | 1/3 | 1   |     |
|-----------------|-----|-----|-----|-----|-----|-----|
| $\frac{dy}{dx}$ | +ve | 0   | -ve | 0   | +ve |     |
| slope           | /   | _   | \   | _   | /   | [3] |
|                 |     | Max |     | Min |     |     |
|                 |     | tp  |     | tp  |     |     |

(ii) 
$$y = x^3 + x^2 - x + 5$$
  
 $\frac{dy}{dx} = 3x^2 + 2x - 1$   
 $\frac{d^2y}{dx^2} = 6x + 2$   
 $\frac{x}{dx} - 1$   $-\frac{1}{3}$   $0$   
 $\frac{dy}{dx}$  -ve  $0$  +ve

4

 $\begin{array}{c|c} \frac{dy}{dx} & -ve & 0 & +ve \\ \hline cconcavity & down & up \\ \hline & Pt of \\ I & I \end{array}$ 

Hence, point of inflexion at  $\left(-\frac{1}{3}, 5\frac{11}{27}\right)$ 



(b) (i)



[1]

Surface Area =  $96 \text{ cm}^2$ . Hence, (ii)

$$2x^{2} + 4xy = 96$$
  

$$4xy = 96 - 2x^{2}$$
  

$$y = \frac{2(48 - x^{2})}{4x}$$
  

$$y = \frac{48 - x^{2}}{2x}$$
[2]

(iii) Volume = 
$$x^2 y$$
  
 $V = \frac{x^2 (48 - x^2)}{2x} = \frac{1}{2} x (48 - x^2)$  [1]  
 $V = 24x - \frac{x^3}{2}$ 

(iv) Now, maximum volume when 
$$\frac{dV}{dx} = 0$$
,

$$V = 24x - \frac{x^3}{2}$$

$$\frac{dV}{dx} = 24 - \frac{3x^2}{2}$$

$$3x^2 = 48$$

$$x^2 = 16$$

$$x = 4 \text{ cm}, \quad x > 0$$

$$y = \frac{48 - 16}{8} = 4 \text{ cm}$$
[3]

Max Volume =  $64 \text{ cm}^3$ 

# Question 14

(a) (i) 
$$\int 3x^{2} + \frac{2}{x^{2}} dx = \int 3x^{2} + 2x^{-2} dx$$
$$= \frac{3x^{3}}{3} + \frac{2x^{-1}}{(-1)} + c$$
[1]
$$= x^{3} - \frac{2}{x} + c$$
[1]
$$(ii) \int_{0}^{1} (4-x)^{5} dx = \left[\frac{(4-x)^{6}}{(-1)(6)}\right]_{0}^{1}$$
$$= -\frac{1}{6} \left[(4-x)^{6}\right]_{0}^{1}$$
$$= -\frac{1}{6} (3^{6} - 4^{6})$$
$$= \frac{3367}{6}$$

Find the area bounded by the curve  $y = 4x - x^2$  and the x axis. (b)

Area wholly above the x-axis, hence

Area wholly above the x-axis, hence  

$$Area = \int_{0}^{4} 4x - x^{2} dx$$

$$= \left[ 2x^{2} - \frac{x^{3}}{3} \right]_{0}^{4}$$

$$= (32 - \frac{64}{3})$$

$$= \frac{32}{3} \text{ units}^{2}$$
[3]

(c) (i) At A, for the curve, 
$$y = (x-2)^2$$
,  $y = 0$ .  
So,  $x = 2$ , i.e. A (2, 0)

At B, for the line, y = 4 - x, y = 0

So, x = 4, i.e. B (4, 0)

At C, the curves  $y = (x-2)^2$  and y = 4-x intersect, so,

$$(x-2)^{2} = 4-x$$

$$x^{2}-4x+4=4-x$$

$$x^{2}-3x=0$$
If  $x = 3$  then  $y = 1$ , so C (3, 1) [3]  
 $x(x-3)=0$ 
 $x = 0$  or  $3, x > 0$   
 $x = 3$ 

(ii)

1)  
Area = 
$$\int_{2}^{3} (x-2)^{2} dx + \int_{3}^{4} 4 - x dx$$
  
=  $\left[\frac{(x-2)^{3}}{3}\right]_{2}^{3} + \left[4x - \frac{x^{2}}{2}\right]_{3}^{4}$  [3]  
=  $(\frac{1}{3} - 0) + \left[(16 - 8) - (12 - \frac{9}{2})\right]$   
=  $\frac{1}{3} + 8 - \frac{15}{2}$   
=  $\frac{5}{6}$  square unitss

(d) 
$$\int_{-a}^{a} x^{5} - x^{3} dx = 0$$
. The graph of  $y = x^{5} - x^{3}$  is an odd function, i.e.  $f(a) = -f(-a)$ , and as such has point symmetry about the origin.

Thus the areas above and below the *x*-axis on either sides of the *y*-axis must be equal, hence the integral:

$$\int_{-a}^{a} x^{5} - x^{3} \, dx = 0$$
[2]

(a) 
$$\log_3 27 - \log_9 \left(\frac{1}{3}\right) + 7 = \log_3 \left(3\right)^3 - \log_9 \left(9^{-\frac{1}{2}}\right) + 7$$
  
=  $3 \log_3 3 + \frac{1}{2} \log_9 9 + 7$   
=  $10 \frac{1}{2}$  [2]

(b) (i) 
$$f(x) = \frac{x}{e^x}$$
.  
 $f'(x) = \frac{e^x(1) - x(e^x)}{e^{2x}}$   
 $= \frac{e^x(1-x)}{e^{2x}}$ 
  
 $= \frac{1-x}{e^x}$ 
  
 $f''(x) = \frac{e^x(-1) - (1-x)(e^x)}{e^{2x}}$   
 $= \frac{e^x(x-2)}{e^{2x}}$   
 $= \frac{x-2}{e^x}$ 

(ii) If 
$$f'(x) = 0$$
  
 $1 - x = 0$   
 $x = 1$   
If  $x = 1$  then  $y = e^{-x}$  and  $f''(x) = \frac{-1}{e^x} < 0$ . [2]

Hence,  $(1, e^{-x})$  is a max turning point.

(iii) If 
$$f''(x) = 0$$
  
 $x-2=0$   
 $x=2$ 

If x = 2 and  $y = 2e^{-x}$ 

x123
$$f''(x)$$
-ve0+veConcaveConcaveConcavedownup

Hence point of inflexion at  $(2, 2e^{-x})$ 

(iv) Let 
$$y = xe^{-x}$$
, so  $e^{-x} \to 0$ , as  $x \to \infty$  [1]



$$y = \frac{4}{\sqrt{x}}$$

$$y^{2} = \frac{16}{x}$$

$$Volume = \pi \int_{1}^{5} \frac{16}{x} dx$$

$$= \pi [16 \log_{e} x]_{1}^{5}$$

$$= 16\pi (\log_{e} 5 - \log_{e} 1)$$

$$= 16\pi \log_{e} 5$$
[5]

(a) Area = 
$$\frac{r^2\theta}{2}$$
  
 $\frac{3\pi}{2} = \frac{r^2\frac{\pi}{3}}{2}$ 
 $r^2 = 9$ 
 $r = 3$ 
[2]

(b) At P, 
$$\left(\cos\left(-\frac{\pi}{3}\right), \sin\left(-\frac{\pi}{3}\right)\right) = \left(\cos\frac{\pi}{3}, -\sin\frac{\pi}{3}\right)$$
 [3]  
 $= \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ 

(c) 
$$2\sin^2 x - 1 = 0$$
 [3]  
 $\sin^2 x = \frac{1}{2}$   
 $\sin x = \frac{1}{\sqrt{2}}$  or  $-\frac{1}{\sqrt{2}}$   
 $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$  or  $\frac{7\pi}{4}$ 

Newington College



[3]

(ii) 
$$h = \frac{2\pi - 0}{4} = \frac{\pi}{2}$$

| x                         | 0  | $\frac{\pi}{2}$ | π  | $\frac{3\pi}{2}$ | 2π |
|---------------------------|----|-----------------|----|------------------|----|
| $f(x) = 2\sin\frac{x}{2}$ | 0  | $\sqrt{2}$      | 2  | $\sqrt{2}$       | 0  |
| Factor                    | x1 | x4              | x2 | x4               | x1 |
| Value                     | 0  | $4\sqrt{2}$     | 4  | $4\sqrt{2}$      | 0  |

Area = 
$$\frac{\pi}{6} \left( 4 + 8\sqrt{2} \right) \square 8$$
 [5]

11

2012